Deletion of the α-(1,3)-Glucan Synthase Genes Induces a Restructuring of the Conidial Cell Wall Responsible for the Avirulence of Aspergillus fumigatus

نویسندگان

  • Anne Beauvais
  • Silvia Bozza
  • Olaf Kniemeyer
  • Céline Formosa
  • Viviane Balloy
  • Christine Henry
  • Robert W. Roberson
  • Etienne Dague
  • Michel Chignard
  • Axel A. Brakhage
  • Luigina Romani
  • Jean-Paul Latgé
چکیده

α-(1,3)-Glucan is a major component of the cell wall of Aspergillus fumigatus, an opportunistic human fungal pathogen. There are three genes (AGS1, AGS2 and AGS3) controlling the biosynthesis of α-(1,3)-glucan in this fungal species. Deletion of all the three AGS genes resulted in a triple mutant that was devoid of α-(1,3)-glucan in its cell wall; however, its growth and germination was identical to that of the parental strain in vitro. In the experimental murine aspergillosis model, this mutant was less pathogenic than the parental strain. The AGS deletion resulted in an extensive structural modification of the conidial cell wall, especially conidial surface where the rodlet layer was covered by an amorphous glycoprotein matrix. This surface modification was responsible for viability reduction of conidia in vivo, which explains decrease in the virulence of triple agsΔ mutant.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

β-1,3-glucan modifying enzymes in Aspergillus fumigatus

In Aspergillus fumigatus like in other filamentous ascomycetes, β-1,3-glucan constitutes a prominent cell wall component being responsible for rigidity of the cell wall structure. In filamentous fungi, softening of the cell wall is absolutely required during conidial germination and hyphal branching. Because of the central structure of β-1,3-glucans, it is expected that β-1,3-glucanases play a ...

متن کامل

Members of Glycosyl-Hydrolase Family 17 of A. fumigatus Differentially Affect Morphogenesis

Cell wall biosynthesis and remodeling are essential for fungal growth and development. In the fungal pathogen Aspergillus fumigatus, the β(1,3)glucan is the major cell wall polysaccharide. This polymer is synthesized at the plasma membrane by a transmembrane complex, then released into the parietal space to be remodeled by enzymes, and finally incorporated into the pre-existing cell wall. In th...

متن کامل

β-1,3-Glucan-Induced Host Phospholipase D Activation Is Involved in Aspergillus fumigatus Internalization into Type II Human Pneumocyte A549 Cells

The internalization of Aspergillus fumigatus into lung epithelial cells is a process that depends on host cell actin dynamics. The host membrane phosphatidylcholine cleavage driven by phospholipase D (PLD) is closely related to cellular actin dynamics. However, little is known about the impact of PLD on A. fumigatus internalization into lung epithelial cells. Here, we report that once germinate...

متن کامل

Aspergillus nidulans Cell Wall Composition and Function Change in Response to Hosting Several Aspergillus fumigatus UDP-Galactopyranose Mutase Activity Mutants

Deletion or repression of Aspergillus nidulans ugmA (AnugmA), involved in galactofuranose biosynthesis, impairs growth and increases sensitivity to Caspofungin, a β-1,3-glucan synthesis antagonist. The A. fumigatus UgmA (AfUgmA) crystal structure has been determined. From that study, AfUgmA mutants with altered enzyme activity were transformed into AnugmA▵ to assess their effect on growth and w...

متن کامل

The Dual Activity Responsible for the Elongation and Branching of β-(1,3)-Glucan in the Fungal Cell Wall

β-(1,3)-Glucan, the major fungal cell wall component, ramifies through β-(1,6)-glycosidic linkages, which facilitates its binding with other cell wall components contributing to proper cell wall assembly. Using Saccharomyces cerevisiae as a model, we developed a protocol to quantify β-(1,6)-branching on β-(1,3)-glucan. Permeabilized S. cerevisiae and radiolabeled substrate UDP-(14C)glucose allo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2013